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Method Handles in JDK 7: The Good

• Flexible and powerful.
– Competent to alias any “invoke” instruction.
– Able to express all functional argument transformations.

• MH graphs are aggressively inlined and optimized.
– When rooted at invokedynamic.
– When a constant in a final field.

• Successfully used in multiple projects.
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Method Handles in JDK 7: Not-so-good

• “Performance cliff” when inlining does not occur
– When method handle graph too big (application scale)
– Or, on invocation of non-constant method handle (!)

• On-the-fly conversion path (generic invoke) is slow
– Implementation is awkward and complex

• NoClassDefFoundError in large applications
– Due to ad hoc translation of MH graph to bytecodes in JVM
– Bytecodes are the wrong IR!  (Nominal method references)
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Method Handles in JDK 7: The Ugly

• MH graph semantics defined as mini-interpreter
– Hand-written in assembly code (difficult to port, 100s of lines)
– Argument transforms are defined in terms of interpreter stack

• Therefore, no general fast path for compiled code (!)
• JVM is entangled in MH operations

– MH has assembly-code pointer installed by JVM
– JNI native function required when creating every MH node
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Rendering MHs to bytecodes (JDK 7)

• Must use a class loader that can see both A and B.
• What if there is no such class loader?
• What if A and B have the same name spelling??
• How do signature constraints interact???

mh = MH.filterReturnValue(A::f, B::g)
⇒

return B.g(A.f(param))
⇒

0 iload_0
1 invokestatic A.f(int)long
4 invokestatic B.g(long)float
7 freturn
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Bytecode rendering only for constants

• Non-constant invocation goes “off the cliff”
– Into assembly code

• Assembly code is inscrutable to compiler
• Includes special “ricochet frames” (mini-interpreter)
• Compiled-to-compiled calls copy arguments

– Several times:  C2I, MH transform, I2C
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JVM Entanglement

• Every method handle node is created with a JNI call.
– One node for each individual argument transformation.

         (ex: swap, dup, drop, insert, box, unbox, cast)
– JVM is responsible for mapping transform to assembly stub
– JDK is responsible for knowing the repertoire of transforms
– JDK composes low-level transforms (AdapterMethodHandle)
– JVM decorates them with assembly code handlers

• ⇒ too many cooks in the kitchen
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JVM Dis-entanglement

• Root problem: MH chains are too low-level
• The MH chain is the de facto IR in JDK 7.

– Nodes are low-level argument transformations.
– At the level of single interpreter instructions.

• Solution: Better IR.
– At the level of JVM methods.
– Meshes better with the JVM execution engine.
– Interprets and/or compiles.

• More representation decisions decoupled from JVM.
• Impact on source base:

– JDK LOC: 7.0k added, 3.4k deleted, net +3.6k
– JVM LOC: 5.0k added, 12.6k deleted, net -7.6k

•
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Key IR requirements

• Easy to create “units of behavior”
– Assemble in pure Java code; simple pointer pasting

• Able to compose reusable building blocks
– Structure should be inherently reusable & cacheable

• Can be reused frequently (reduced type system)
• Competent to represent method handles

– Represent all adapters and argument transforms
– Represent uses of all methods, fields, and constructors

• Similar to JVM methods
– Missing features ok (minimal control flow)
– Locally verifiable when rendered to bytecodes
– Trusted (potentially unsafe) at the edges between blocks
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Inspiration

λ f g x . f(g(x))

(lambda (f g x)

  (define a (g x))
  (define b (f a))

  b)
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Example 1: swap arguments

mh1 = MHs.permuteArguments(mh0,
      (Object,Object)->Object, {1,0})

mh1 = new SimpleMethodHandle(

λ (mh1:L; x:L, y:L) {
  z:L = MH::invokeBasic(#(mh0); y, x);

  return z

})
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Lambda Form IR (in one page)

• A LambdaForm is a linear array of Names.
– First formals, then expressions.

• An expression is a NamedFunction with arguments.
– Named function is a symbolic reference on Boot Class Path.
– Argument array contains (previous) Names and/or Objects.
– Calls can be either strongly or weakly typed.

• arity, return value represented as small ints
• no symbolic names (just local Name pointers)
• no control flow (except early exit), so trivially SSA

Monday, July 30, 12



     © 2012 Oracle Corporation

Lambda Form AST interpreter
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LF type system

λ (a0:L, ..., a9:J) {
  t10:I = nf10(...); ... t19:D = nf19(...);
  return t19 }

• basic value type is one of { ref, int, long, float, double }
• (represented as signature letters "LIJFD")
• method type composed of the above, plus void ("V")
• GC-safe, weakly typed

– trusted, private to java.lang.invoke
• allows rendering to verifiable bytecodes

– (if conversions are added)
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What's in a Name?

• No symbols, just compact small indexes
– no lexical contours, no non-local references.

• NamedFunction plus a sequence of arguments
– Object[] arguments

• NF is a symbolic reference to a BCP method
– can be static, virtual, etc.
– realized by an arbitrary Method Handle
– (this part of the design is meta-circular)

• each argument is a previous Name (in same LF)
– or else an arbitrary constant, boxed as an Object
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Lambda Form Execution

• Given a set of arguments and a LambdaForm
– Allocate an associated value array, one for each Name.
– Associate incoming arguments with formal Names.

• For each expression, execute the expression.
– That is, apply the named function to its argument array.
– The argument array can contain embedded Names.
– Those names are replaced by their associated values.

• Record each expression value in the value array.
• Return the value associated with the last Name.

– (It could be another of the associated values, actually.)
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Lambda Form AST interpreter
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Lambda Form interpreter, in one page
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Lazy Method Handle interpretation

• Initially, direct AST interpretation of MH IR.
• IR can be presented the JVM lazily.

– Early AST interpretation in Java code.
– Later insertion into the JVM for direct execution.

• Insertion is (currently) by rendering to bytecodes
– Uses anonymous class mechanism, as an optimization.

• Mixed mode:
– AST interpreter (in Java code)
–   ⇒ bytecode interpreter (after lazy 

–       ⇒ JIT compilation

–            ⇒ (etc…)
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Integrating LF + MH + bytecode

• call from MH to LF = jump to mh.form
• call from LF to MH = NamedFunction invokeBasic

– (unchecked version of invokeExact; building block)
• call from LF to arb. Java method: DMH “linkers” (later)

– DMH = “Direct Method Handle”
• call from arbitrary bytecode to MH: LF adapters

– Need adapter code to move arguments
– Also introduces hidden contextual argument (later)
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Example 1: swap arguments
(single-use version)

mh1 = MHs.permuteArguments(mh0,
      (Object,Object)->Object, {1,0})

mh1 = new SimpleMethodHandle(

λ (mh1:L; x:L, y:L) {
  z:L = MH::invokeBasic(#(mh0); y, x);

  return z

})
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Example 2: return a constant value
(single-use version)

mh1 = MHs.constant(Object, "invariable")

mh1 = new SimpleMethodHandle(

λ (mh1:L) {
  k:L = *ValueConversions::identity(#("invariable"));

  return k

})
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Bound Method Handles

• Open-ended schema of “struct”-like classes
• Rooted at BoundMethodHandle

– Each “species” handles one structure layout.
– Depth = 1:  Species inherit from BMH, but are all final.
– All fields are final (immutable).

• Each species used via a set of method handles
– Constructor, extender, accessors.

• BMH species are generated as needed.
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Example 1B: swap arguments
(BMH version)

mh1 = new BoundMethodHandle.Species_L(

λ (m; x:L, y:L) {
  mh0:L = BoundMethodHandle::argL0(m);

  z:L = MH::invokeBasic(mh0; y, x);

  return z

}, mh0)
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Example 2B: return a constant value
(BMH version)

mh1 = MHs.constant(Object, "invariable")

mh1 = new BoundMethodHandle.Species_L(

λ (m:L) {
  k:L = BoundMethodHandle::argL0(m);

  return k

}, "invariable")
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Direct Method Handles

• Capability for using one Java method
– Or field or constructor
– Implements CONSTANT_MethodHandle constants

• Carries an internal JVM cookie “MemberName”
• Performs needed checks or conversions
• Has internal weakly-typed jump to its member-name

– For methods and constructors, uses a “linker intrinsic”
– For fields (static & instance), uses sun.misc.Unsafe
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Direct Method Handle “Linkers”

• Weakly-typed invocation of arbitrary member-names
• Examples:

MH::linkToStatic(#(Thread::current))

MH::linkToStatic(s,j,d,k,l; #(System::arraycopy))

MH::linkToVirtual(obj; #(Object::hashCode))
MH::linkToInterface(cmp,x,y; #(Comparator::compare))

MH::linkToSpecial(str; #(String::length))
MH::linkToSpecial(sb,len; #(StringBuilder::<init>))

• Oddity:  The member-name is the trailing argument
– Forces caller to perform argument shuffling
– Trailing argument can be used and transparently dropped
– Enables compiled fast paths w/o special JVM handling
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Example 3: call a regular method
(single-use version)

mh1 = Object::hashCode

nm1 = (MemberName(Object::hashCode))

mh1 = new SimpleMethodHandle(

λ (m:L, obj:L) {
  v:I = MH::linkToVirtual(obj; #(nm1))

  return v

})
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Example 3B: call a regular method
(real version)

mh1 = Object::hashCode

nm1 = (new MemberName(Object::hashCode))

mh1 = new DirectMethodHandle(

λ (m:L, obj:L) {
  n:L = DMH::memberName(m);

  v:I = MH::linkToVirtual(obj; n);

  return v

}, nm1)
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Metacircularity (bootstrapping)

• LF interpreter can be written down in one page
• LF interpreter uses MHs

– ... which in turn may use the LFI
• In particular, LFI uses DMHs

– ...to access things like Class.cast
• But DMHs are defined in terms of LFs!

– requires DMH methods to work immediately
– requires BMH accessors almost immediately

• Therefore, eager byte-compilation of a few LFs.
• The rest can be managed lazily

– Amortize costs of sharing (tabulation) and compilation
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Bytecode call sites for JSR 292

• Two kinds:  invokedynamic and “invokehandle”.
• In both cases, there is a linked contextual argument.

– For invokedynamic, it is the linked CallSite instance.
• Invocation must insert and invoke the call site target.

– For method handles, it is the resolved MethodType value.
• Invocation must reify the MT enough to check it.
• Generic invoke uses the MT to direct arg. conversions.

• We formalize this in the JVM via “appendix” args.
– Linking indy or MH.invoke makes an up-call to the JDK.
– The JDK computes a LF and appendix argument.
– The JVM records both and uses them for all calls.

Monday, July 30, 12



     © 2012 Oracle Corporation

Example 4: Linking MH.invokeExact

x = mh.invokeExact(12,3.14)

x = A(mh, 12, 3.14; app_MT)

where A = λ (m:L, a1:I, a2:D; mt:L) {
  c:V = *Invokers::checkExactType(m, mt);

  v:L = MH::invokeBasic(m, a1, a2);

  return v

}

where app_MT = #((int,double)->Object))
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Example 5: Linking invokedynamic

x = invokedynamic[BSM...](12,3.14)

x = B(12, 3.14; app_CS)

where B = λ (a1:I, a2:D; cs:L) {
  m:L = CallSite::getTarget(cs);

  v:L = MH::invokeBasic(m, a1, a2);

  return v

}

where app_CS = #( result of running BSM )
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Example 6: function composition

mh = MH.filterReturnValue(A::f, B::g)

mh = new BoundMethodHandle.Species_LL(

λ (m; x:I) {
  f:L = BoundMethodHandle::argL0(m);

  y:J = MH::invokeBasic(f; x);

  g:L = BoundMethodHandle::argL1(m);

  z:F = MH::invokeBasic(g; y);

  return z

}, mh0)
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Status

• Committed to JDK 8 in “hotspot-comp” repository
• Initial feedback is neutral to positive

– Thanks, MLVM early adopters!
• No sign of NoClassDefFoundError anymore.
• Performance cliff has smoothed, apparently.

– Report: JRuby “tictactoe” test runs 80% faster.
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Future work

• Performance tuning
– Caching (known useful patterns, like DMHs and adapters)
– Interning (emergent common structures)
– (Encouraging early results: equal or faster with little tuning)

• Static computation (optional, for some platforms)
• Extended basic block capability (multiple exits)
• Additional type inference, to reduce casting
• Tail-calls (to reduce the “epic” backtraces)
• Use to build Functional Interface Delegate Objects
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